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The Crystal Structure of Synthetic Mooihoekite, CusFeoS¢*
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Mooihoekite, CusFeqsS;¢, is a recently characterized mineral that is closely related to chalcopyrite,
CuFeS,, talnakhite, CusFesS;6, and haycockite, Cu,FesSs. A synthetic mooihoekite crystal was used in a
three-dimensional X-ray structure analysis. The crystal cell is tetragonal, P42m, with a=10-585 (5),
c=5383 (5) A, Z=1 and Dx=437. The super-lattice nature of the structure required that special at-
tention be given to low-intensity reflexions. Three sets of intensity data were collected on a 4-circle
diffractometer. The presence of twinning [twin plane {201}] required that separate data be collected for
the four additional twin-components. Absorption corrections were applied. The structure is a sphalerite-
like arrangement of metal and sulphur atoms with two additional metals at interstitial sites. Information
on the order and disorder of the metals was obtained both from the X-ray analysis and from previously
reported magnetic and Mossbauer data. The structural parameters were refined by full-matrix least-
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squares methods to R values of 0-205 (all data) and 0-047 (‘less thans’ omitted).

Introduction

Mooihoekite, CugFesS,¢, is a recently characterized
mineral that is compositionally and structurally similar
to chalcopyrite, CuFeS,, talnakhite, CugFegS,,, and
haycockite, Cu,FesSs. Mooihoekite and haycockite
were shown to be distinct minerals after a detailed
chemical, optical, magnetic, and X-ray diffraction study
of sulphide-bearing ore from the Mooihoek Farm area,
Transvaal, South Africa (Cabri & Hall, 1972). These
studies were undertaken in association with a detailed
investigation of the central portion of the Cu—Fe-S
system (Cabri, 1973).

Mooihoekite has been synthesized in this laboratory
and is similar to the high-temperature ‘p-phase’, re-
ported by Hiller & Probsthain (1956), except that it is sta-
ble at room temperature. In most respects, the synthetic
material is superior in homogeneity and crystallinity to
the natural mineral and, for thesc reasons, it was used
in the previously reported magnetic and Mdssbauer
measurements (Townsend, Horwood, Hall & Cabri,
1971), and in this study. Townsend er al. (1971) re-
ported that the magnetic susceptibilities of mooihoekite
had a large temperature-independent component
(9% 107° e.m.u. g~'), as well as a temperature-depen-
dent component, consistent with a partly disordered
antiferromagnetic structure. The Mdssbauer spectrum
is consistent with metals occupying some of the sites
that are vacant in a chalcopyrite-like arrangement of
atoms.

This X-ray investigation was undertaken to provide
accurate information on the atomic coordinates and
thermal parameters, and to identify the metal ordering
in the structure where feasible. To this latter end, the
recently refined structural parameters of chalcopyrite
(Hall & Stewart, 1973) and cubanite, CuFe,S;, (Szy-
manski, 1973) were utilized.

* Mineral Research Programme, Sulphide Research Contri
bution No. 76.
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Experimental
Crystal data

Source: synthetic sample no. 179 (Cabri, 1973).
Microprobe analysis of no. 179 in at. % (Cabri & Hall,
1972): Cu: 2641 (10), Fe: 26-44 (14), S: 47-16 (2).
Chemical composition: Cu, ;50Fe; ;51S;.00.
Stoichiometric formula: CugFe,S,q.
Systematic hk/ absences: none.
Space group: P42m (No. 111).
Cell dimensions:a=10-585(5), c = 5-383 (5) A ;
Z=1, Dyeas=436 g cm™3, D . =437 g cm >,

Linear absorption coefficient: g(Mo Ka)=146-9 cm ..
Intensity data: 1614 reflexions measured (three times).

Several small crystals of synthetic mooihoekite were
obtained from Dr L. J. Cabri of the Mineral Sciences
Division. Gandolfi-camera X-ray powder patterns
showed these crystals to be essentially identical with
those of natural mooihoekite but with significantly
sharper line profiles. Single-crystal X-ray precession
photographs showed all crystals to be twinned about
the {201} twin planes. Natural mooihoekite fragments
also exhibit this twinning in addition to considerable
microcrystallinity and high mosaicity. A synthetic
crystal which had a single dominant twin-component
was selected for this analysis. It was irregular square-
pyramidal in shape with widths between 0-06 and 0-09
mm. Because of the small size and relative scarcity of
suitable single crystals, no attempt was made to grind
a sphere.

Initial examination of the precession films showed
only reflexions satisfying the hk/ condition s+ k =2n,
and the tetragonal Laue group 4/mmm. However, sub-
sequent detailed study of the films, along with addi-
tional evidence obtained during data collection, re-
vealed several reflexions that violated this condition.
The possible space groups were, therefore, P4/mmm,
P42m, P4m2, P4mm, and P422. The super-lattice hkl/
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pattern of the intense reflexions that is present in the
data, with 4, k =2n, is characteristic of chalcopyrite-like
structures and denotes the presence of a sphalerite-like
cubic subcell (a~5-3 A). The tetrahedral coordination
of such a subcell necessitates the choice of the space
group P42m (No. 111). ‘ ‘

The crystal was mounted on a Picker 4-circle diffrac-
tometer and the orientation of the major twin-com-
ponent was located consistent with the precession film
data. Alignment of suitable reflexions permitted the
determination of the orientation matrix and final cell
parameters for the major twin-component. ansider-
able care was required in selecting these reflexions be-
cause those significantly affected by the minor twin-
components could not be used. The angles 26, y and w
were obtained from an automatic alignment process
(Busing, 1970) on eight equivalent 884 reflexions, four
equivalent 12,12,0 reflexions and eight equivalent
12,0,6 reflexions assuming a triclinic cell. The refined
unit-cell values were a=b=10-585 (5) A, c = 5:383 G)A
and a¢=8=y=90-00 (1)°. Orientation matrices were
similarly determined for the minor components, but
with less accuracy.

The minor twin-components result from the four
{201} planes of the major component acting as tyvin
planes (see Fig. 1). The refined orientation matrices
give /[#00]/[00/];=0-98° for each of the minor com-
ponents and this compares favourably with a value of
0-97° calculated from the cell dimensions. The overall
result of the twinning on the diffraction data is that
some reflexions with 2=2n or k =2n have contributions
from more than one component. The relative propor-
tions of twin components were determined from inten-
sity measurements of the 330 and 040 reflexions. The
ratio of the five twin components were 1-:000:0-109 (4):
0-035 (7):0-013 (1):0-008 (2).

The intensity data for mooihoekite were collected
on an automatic 4-circle diffractometer using graphite-
monochromated Mo Ku radiation. The /26 scan width
(2-5 to 3:2°) was adjusted for dispersion, and the back-
ground counts were measured on each side of the peak
for approximately the same length of time as that taken
for the scan. The intensities of two reference reflexions
were recorded after every 50 measurements in order to
monitor the crystal alignment and instrument stability.
No significant variations were noted during the data
collection.

An asymmetric set of reflexions was collected three
times for the major twin-component in order to provide
greater reliability in the measurement of the low inten-
sities which represented a large proportion of the data.
The intensities of equivalent reflexions were averaged
into a unique set in preparation for the adjustment of
twin overlap. For the four minor twin-components
only data where reflexions overlapped those of the
major component were collected.

Many intensities in the minor twin-component data
were greater than the known twin proportions would
permit; these resulted from the overlap of major com-
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ponent intensities. The identification of reflexions af-
fected by overlap was used in the reverse sense to com-
pensate for twinning contributions in the merged inten-
sity data. The adjustments also required a knowledge
of the relative orientation of the minor components be-
cause the twinning coincided only for certain ¢ and y
values and at low 26 angles.

Following adjustments to the intensities for twinning,
the merged set of 4k/ data was corrected for absorption
effects with a generalized Gaussian procedure (Gabe &
O’Byrne, 1970). For the purposes of structure refine-
ment the intensity data were considered in two different
ways. First, reflexions with net measured intensities
below the 10 % significance level were set to a value of
1650 (1) and coded, for refinement purposes, as ‘less
than’. With this criterion, all but 409 of the 1614 reflex-
ions were considered as ‘less thans’. In a second data
set, all reflexions were included at their measured net
intensities except those values which calculated nega-
tive, which were set equal to zero. The initial structure
solution and refinement were performed with the inten-
sity data treated in the first way (i.e. with ‘less thans’),
but the final least-squares refinement used intensities
at their measured values.

Structural determination

The super-lattice pattern of intense reflexions with
h,k =2n indicated that the dominant structural feature
in mooihoekite, as in other chalcopyrite-like minerals,
is the sphalerite-like tetrahedral arrangement of the
sulphur and metal atoms. On this basis, the first struc-
ture factors were calculated with 16 sulphur atoms at
the P42m sites 80 (0-125,0-625,0-250), 4n (0-125,0:125,
0-250) and 4~ (0-375,0-375,0-250); and 16 copper—iron
atoms at sites 4n (0-25,0,25,0-50), 4/ (0-25,1,0), 4i
(0-25,0,0), 21 (4,0,%), 1c (0,0,%). and 15 (3.4,1). This,
and all subsequent calculations, were performed on the
CDC 6400 computer with the X-RAY system of crys-

Fig.1. A real-space representation of the twinning components
in mooihoekite. The major twin-component in the form of a
double cell (cross-hatched) is surrounded by the four minor
twin-components in their orientations. A (201) twin plane is
shown stippled for one double cell. The axial system refers
to the major twin-component.
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that are most sensitive to distortions from the basic
sphalerite-like sub-cell and to the metal ordering.

The recent refinements of chalcopyrite (Hall &
Stewart, 1973) and cubanite (Szymanski, 1973) indicate
that the Cu and Fe atoms in the chalcopyrite-like
structures can be distinguished by isotropic thermal
motion and atomic coordination in addition to elec-
tron-density differences. The summary of these data,
for chalcopyrite, cubanite, and talnakhite (see Table 1),
shows that the isotropic temperature factors are, in
general, lower for iron atoms than for copper atoms.
In the more complex Cu-Fe-S structures, this could be
due to the mis-identification of a metal as a copper or
an iron atom, rather than as a disordered (Cu,Fe)
atom. However, the consistency of values for the well
ordered structures of chalcopyrite and cubanite sup-
ports the concept that the thermal motion is a function
of the bonding associated with each atom-type. These
values should, therefore, reflect the ionic—covalent in-
teraction between atoms, and/or the magnetic coupling
interaction of the iron atoms.

In chalcopyrite, the tetrahedral coordination of the
iron atom is perfectly regular, but that of the copper
atom is not. These differences in coordination with
atom type also occur in the structure of talnakhite
(Hall & Gabe, 1972) and were used to assist in the iden-
tification of copper and iron atom sites in mooihoekite.
Insites lc, 14, la, and 1d, the metals could not be iden-
tified directly, so different metal combinations were
tested as structural models in the refinement process.
Successive cycles of full-matrix least-squares refine-
ment were used with the first set of data to refine the
atomic positional and isotropic thermal parameters in
each model. The best model (R=0-065, ‘less thans’
omitted) was shown to be that with Cu atoms at sites
4n, 4i and 1d, and Fe atoms at sites 4/, 2f, 1¢, 16 and la.

Before refinement could continue it was necessary to
correct for anomalous dispersion. The space group
P32m permits two enantiomorphic structures that can
both be defined in terms of right-handed cell axes. It
was necessary, therefore, to identify which of these had
been implicitly defined at the time of data collection by
the arbitrary choice of cell axes. The anomalous disper-
sion corrections Af” and 4f" for Cu, Fe, and S (Cro-
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mer & Libermann, 1970) were included in the least-
squares refinement process of the two enantiomorphic
structures x,y,z and x,y,z. Convergence to R values of
0-069 and 0-058 respectively indicated that the latter
configuration was consistent with the initial choice of
axes and was used in further refinement.

In addition, although the mooihoekite crystal exhi-
bited a relatively high mosaicity during the data collec-
tion process, at least four of the most intense reflexions
were attenuated significantly by extinction effects and
were omitted in subsequent least-squares calculations.
It was also necessary at this stage to consider the effect
of the probable ionic state of the atoms on the scatter-
ing factors used in the refinement process. As with the
structure of chalcopyrite (Hall & Stewart, 1973), the
effective ionic configuration of atoms in mooihoekite
is expected to be somewhere in the range of
Cu*Fe’*S2~ to Cu?*Fe?+S%-.

The Cu* and Fe** curves of Cromer & Waber
(1965), and the S~ curve of Tomiie & Stam (1958),
were selected as suitable approximations for further
calculations. Three cycles of isotropic least-squares re-
finement reduced the R value to 0:050 and improved
the overall agreement, particularly in the low-angle
region of the data.

At this point, the relative instability of the isotropic
thermal parameters associated with atoms Fe(lc),
Fe(ib), Fe(la), and Cu(ld) became a limiting factor to
the least-squares process. A review of the metal-order-
ing based both on the thermal and stereochemical infor-
mation discussed above and on the difference synthesis,
indicated that the metals at sites 16 and 14 should be
changed to Cu and Fe atoms, respectively. In addition,
there were high corrclation cocfficients (12 exceceded
0-9) between parameters associated with these and
other atoms due, in large part, to an unfavourable
ratio of intensities considered significant at the 10%
level to parameters for specific sites. It was necessary,
therefore, to continue the refinement with the second
data set where all reflexions were considered at their
net measured intensities. When this was done no corre-
lation coefficient exceeded 0-46 and the previously un-
stable thermal parameters converged to values reason-
ably consistent with the allocation of atom type. An-

Table 2. Final atomic parameters and standard deviations (in parentheses)

The anisotropic temperature factors are expressed in the form T=exp [—2n(U,,a**h*+2U ,a*b*hk + . . .)].
The isotropic temperature factors (B) (in A?) were calculated from the Uj; values.

Atom Type Site x/a ylb z/e Ui x 107 Uy x 100 Us3x 102 U x 102 Uy3x 10° Upsx 100 (B)
M1 Cu 4n 02507(2) 02507(2) 04831(8) 2:1(1) 2:1(1) 19(1) 02() 02() 02() 1-60
M2 Fe 4/ 02423 (3) 1 0 13 13()  12(1) 0 0 06(1) 102
M3 Cu 4 02583 (2) 0 0 1-3(1)  1-8(1  1:9(D) 0 0 0-3(2) 1-31
M4 Fe 2f 3 0 1 13 10() 11 (D) 0 0 0 0-90
MS Fe Ic 0 0 1 5 15(1)  1-1(2) 0 0 0 1-05
M6 Cu 1b 3 ¥ 3 19()  1:9()  1:5(2) 0 0 0 1-40
M7 Fe la 0 0 0 0-3() 03(1) 08(2) 0 0 0 0-37
M8 Fe 1d 3 3 0 1L7() 17(1) 11 (2) 0 0 0 1-20
S1 S 80 01236(3) 03772(3) 02566 (8) 1-:0(1) L6(1) 12(1) —02(1) —00() —02(1) 1-02
2 S 4n 01237 (3) 01237(3) 0-7497(9) 1-1{() 11 () 1-1(2)  01(1) —01 (1) —01(1) 087
S3 S 4n 0-3733(3)  03733(3) 07645(9) 1-:2(1) 12(1) 142 —02(1) 00() 00¢(1) 1-01
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isotropic temperature factors were introduced for all
atoms and the data set converged in four cycles to reli-
ability indices comparable with the precision of the
measured intensities. The final R value for all data was
0-205. The magnitude of this value arises from the large
proportion of weak intensities present in the data and
suggests that this quantity is of questionable use in as-
sessing the reliability for structures of this nature. This
isfurtheremphasized by thefactthat whenthe ‘less thans’
are omitted from the least-squares refinement the final
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R value is 0-046 but the standard deviations for all
parameters are larger and the thermal parameters for
the atoms at sites l¢, 1b, 1a and 1d are almost indeter-
minate.

As noted above, the initial electron-density difference
map showed large positive maxima at the site 2e (4,0,0)
as well as at 1a (0,0,0) and 1d (3,%,0), and the two addi-
tional metal atoms were located at sites la and 1d to
permit flexibility of the allocation of metal types. Al-
though the refinement of the model, described above,

Table 3. Structure factors listed in blocks of constant hk in columns of I, [F,] x 10 and [F.] x 10

E denotes reflexions affected by secondary extinction and omitted from the final refinement.
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resulted in both these sites being occupied by Fe atoms,
this does not imply, of necessity, that the correct site is
2e because the environments of sites 1a and 14 are not
identical. In order to test whether an alternate structure
with metal atoms occupying site 2e is possible, least-
squares refinement on this structure was performed.
The higher R value of 0-065 (‘less thans’ omitted)
suggests that the placing of the additional metal atoms
at the sites la and 1d is correct.

The final atomic parameters, refined with the inten-
sities as measured, are listed in Table 2, and the meas-
ured and calculated structure factors are listed in
Table 3.

Description of the structure

This study has shown that the structure of mooihoekite
(Fig. 2) is based on a sphalerite-like arrangement of
metal and sulphur atoms. Previous determinations of
the structures of chalcopyrite (Pauling & Brockway,
1932) and of talnakhite (Hall & Gabe, 1972), and a
preliminary X-ray analysis of haycockite, indicate that
these structures are also based on the sphalerite-like
subcell. In contrast, cubanite, CuFe,S;, another Cu-
Fe-S mineral associated with chalcopyrite in some
mineral deposits, has an orthorhombic structure that is
essentially ‘wurtzitic’ in nature. It has recently been
shown (Cabri, Hall, Szymanski & Stewart. 1973).
however, that this structure transforms directly to a
cubic phase (@~5-3 A) on moderate heating, with a
sphalerite-like disordered structure. The structures of
all minerals with compositions in the central portion
of the Cu-Fe-S system, therefore, exist at some tem-
perature as a sphalerite-like A BC arrangement of close-
packed layers of sulphur atoms that are tetrahedrally
coordinated to the copper and iron atoms.

O Mi@an) © M5{lc) K> St (8a)
O Mm2@4D @ M6(Ib)
O M3 @ M7(la)
@ Malf) © Ms(ld)

t/; “‘ S3(4n)
AN

Fig.2. Unit-cell model showing the crystal structure of mooi-
hoekite in terms of the independent atomic sites for space
group P42m.

THE CRYSTAL STRUCTURE OF SYNTHETIC MOOIHOEKITE, CuoFesS,¢

It should be stressed, prior to reviewing the structural
parameters of mooihoekite, that the metal-types al-
located to specific atomic sites as listed in Table 2 and

Table 4. Interatomic distances and angles (calculated
[from coordinates in Table 1)

Standard deviations are in parentheses.

Atoms not at x, y, z are specified as follows:
142z b

a X y 1-y X -z
c -y X -z d -y x 11—z
e —-x l—y z f x 1=y 1-z
g —-X y 11—z h x 1—y —z
i ¥y X z J —-X y -z
k x y z—1 ! x -y z
m —-X y 2-—z n l—x y 2-z
o l—x 11—y z p l—x y l—z
q y —-X -z r X -y l-z
s 1—y x 11—z t. ) -x 1-z
u l1—y —Xx z
Distances (A)
MI1-M2 373 (2) S2—M7a 229 (2)
M1-M2a 3:82(2) S3——-M1  2:36 (2)
MI1-M3 373 (2) S3—M2a 2-31 (2)
M1-M3a  3-83 (2) S3—M6 237 (2)
MI1-M4 374 (2) S3--M8a 228 (2)
MI1-M5 375 () S1—Sle 369 (2)
M1-Mé6 3-73 (2) S1--S1f  3-69 (2)
M2-M2b 386 (2) S1--Slg  3:70 (2)
M2-M3c 362 (2) S1—S1h  3:79 (2)
M2-M4d  3-72(2) S1—S1;  3-80 (2)
M2-Mé6 3-83 (2) S1--S1;  3:81(2)
M2-M38 2:73 (1) S1—S2¢g  3-75(2)
M3-M3c 3-87 (2) S1—-S2 377 (2)
M3-M4 371 (2) S1--S24  3-83 (2)
M3-MS5 3-84 (2) S1--S3k 374 (2)
M3-M7 2:73 (1) S1-S3f 374 (2)
M5-M7 2-:69 (1) S1--S3 3-80 (2)
M6-M8 2:69 (1) S2—S2/  3-70 (2)
S1--M1 2:27(2) S2—S2g 375 (2)
S1—M2 2:28 (2) S2—S82m  3-76 (2)
S1--M3c¢  2-28 (2) S2—S3 3-74 (2)
S1--M4d  2:26 (2) S3--S3»n  3:69 (2)
S2--M1 237 (2) S3--S30  3:79 (2)
S2--M3a  2:36 (2) S3--S3p 391 (2)
S2—MS5 2-29 (2)
Angles (°)
S1-—MI1-S1i 113-4 (3) M1—S1--M2 1101 (2)
S1-—M1-82 109-0 (2) M1—S1--M3c¢ 110-3 (2)
S1I-—M1-S3 110-3 (2) M1—S1--M4d 1113 (2)
S2-—M1-S3 104:4 (3) M2—S1--M3c¢ 1053 (2)
S1-—M2-S14 1130 (2) M2—S1--M4d 1100 (2)
S1-—M2-S3k 109-5 (1) M3c-S1--Md4d  109-6 (2)
S1-—M2-83f 109-3 (2) M1—82--M3a 108-2 (2)
S3/~-M2-S3k 1062 (2) M1—S2--M5 107-5 (2)
S1i—M3-Sl1q 113-0 (2) M3a-S2--M3d 1102 (2)
S1g--M3-S2k 107-8 (2) M3a-S2--M35 111-3 (2)
S1i—M3-S2k 1112 (1) M1—S2--M7a 1795 (3)
S2k—M3-S2r 105-6 (2) M3a-S2--M7a 721 (2)
S1s—-M4-S1¢ 109-2 (2) M5—S2—M7a 720 (1)
S1i—M4-S1s 1093 (2) M1—S3—M2a 1096 (2)
S1s—M4-S1u 109-8 (2) M1—S3—Mé6 104-1 (2)
S2-—M5-S2/ 108-0 (2) M24-S3--M2s  113-4 (2)
S2-—M5-S2¢ 110-2 (2) M2a-S3--M6 109-9 (2)
S3-—M6-S30 106-2 (2) M1—S3--M8a 1747 (2)
S3-—M6-S3f 111-1 (2) M2a-S3—M8a 729 (2)
S2g—M7-S2r 107-9 (2) M6—S3--M8a 70-6 (1)
S2k—M7-S2r 110-3 (2)
S3f—MB-S3p 112:5 2)
S3k—-M8-S3p 108-0 (2)
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displayed in Fig. 3, are not unequivocal. This is par- The atomic coordinates listed in Table 2 and the in-
ticularly the case for the metals at sites lc, 15, 1a, and  teratomic distances listed in Table 4 show a substantial
1d, because the parameters pertaining to these sites are  shift (~0-10 A) of the Cu(4i) atoms from the ‘ideal’
largely dependent on the classes of reflexions with very  position in the sphalerite-like subcell (a/2~2-64 A).
weak intensities. This shift is in a direction consistent with the presence

Si(80) S2(4n)

E O~cu (O~Fe

Fig.3. The coordination of each independent atom in mooihoekite with the interatomic distances (A) and angles (°).
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of the interstitial Fe atom at site 1a. The displacement
of the Fe(Ic) atom (0-05 A) which results in an expan-
sion of the ¢ cell parameter agrees with the close prox-
imity of Fe(la). The relative magnitude of these dis-
placements is consistent with the higher degree of steric
freedom at the Cu(4i) site and the necessity for the
displacement of Fe(lc) to distort the entire crystal lat-
tice. Similar explanations may be given for the 0-09 A
shift of Fe(4/) and the 0-05 A displacement of Cu(15)
from the interstitial atom Fe(1d).

Shifts of the sulphur atom from the ideal sites in the
sphalerite-like fcc matrix are best discussed in terms of
the metal coordination. The coordinations about the
individual atoms are displayed in Fig. 3, with the bond
lengths and angles. The average interatomic distances
(Cu-S)=2-33 and (Fe-S)»=2-28 A are consistent with
expansion of corresponding distances 2-302 and 2:257 A
in chalcopyrite (Hall & Stewart, 1973), due to the inter-
stitial atoms. There is a wide range of metal-sulphur
distances on either side of the average values, and this
is another indication of steric hindrance due to inter-
stital atoms on the ionic—covalent bonding. Because of
this, an analysis of individual bond lengths is not likely
to provide reliable information about the nature of
bonding. A possible exception is about the Fe(2f) site
because this is the only metal-coordinated tetrahedron.
Here the Fe-S distance of 2-26 (2) A agrees with that
determined in chalcopyrite, 2:257 (1) A.

The interatomic angles are also largely dependent on
the proximity of the interstitial atoms. Metal-coordi-
nated tetrahedra which share an edge [viz. Fe(4/) and
Cu(4i)] subtend smaller angles of 1062 and 105-6°
with that edge, in agreement with this type of coordi-
nation in talnakhite (105-8°) and cubanite (104-8°). In
chalcopyrite, the Fe-tetrahedra are perfectly regular,
but the Cu-tetrahedra are flattened (Hall & Stewart,
1973). In mooihoekite only two metal sites, Fe(2f) and
Fe(lc), are coordinated to symmetrically equivalent
sulphurs and both these metal-coordinated tetrahedra
are regular, consistent with Fe-tetrahedra in chalco-
pyrite and talnakhite.

The thermal parameters are listed as anisotropic U;;
and average isotropic B, in Table 2. Fig. 4 shows the
thermal ellipsoids plotted using the program ORTEP
(Johnson, 1965) at the 99% probability limit. The
temperature factors are essentially isotropic and are in
good agreement with the expected values (see Table 1).
This provides a reasonable degree of confidence in the
choice of Cu and Fe atoms for metals at 4n, 4/, 4/, and
2f, and to a lesser extent for metals of l¢, 15, 1a, and
1d. It is difficult to say if the anisotropy associated
with some of the atoms is significant or not. The ther-
mal parameters are not well-determined because of
several factors: the large proportion of very weak in-
tensities, the dominance of sub-cell intensities, and the
not insignificant least-squares correlation present in the
refinement of a symmetric structure of this nature.

THE CRYSTAL STRUCTURE OF SYNTHETIC

MOOIHOEKITE, CusFesS;s

Fig.4. Unit-cell model of mooihoekite showing the thermal
ellipsoids of the atoms, plotted at the 99 % probability level,

We are indebted to Dr L. J. Cabri of this Division
who prepared the synthetic mooihoekite crystal used
in this study. Thanks are also due to Mr J. M. Stewart
for his assistance in the preliminary X-ray photo-
graphic survey of the natural and synthetic mooihoe-
kite crystals, to Mr D. Lister for the preparation of the
diagrams, and to participants of the Mineral Research
Program for their valuable discussions.
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